Skip navigation

Monthly Archives: November 2011

There’s been a debate for a number of years, largely driven by marketing and hype, about training volume. There is a “less is better” school of thought, i.e. do one set to failure and that’s all you need to make massive gains from training. Over the years, a number of studies have shown that this is a fine approach for the untrained (i.e. absolute beginners), but may not be appropriate for highly trained athletes.

In the December issue of the European Journal of Applied Physiology, Marshall et al look at the impact of training volume on lower body strength and performance measures. The authors designed a really interesting 12 week training study. During this study, all subjects had the same two-week initial period (to wash out the effects of any previous training), then the six week study period (detailed below), then four weeks of “peaking” where all subjects did the same training program basically focusing on power training.

During the six week study period, all subjects did a split so that 2x per week the subjects trained chest/shoulders/arms and 2x per week the subjects trained back and back squats. The authors divided their subjects into three groups; one did one set on the squat, one did four sets on the squat, one did eight sets on the squat. Every group did the same training protocol on all the other exercises.

Testing was performed after the two week washout period, three weeks into the study period, after the study period, and after the peaking period. Testing consisted of 1-RM on the back squat, isokinetic strength testing, and isometric strength testing (all of the knee extensors).

During the course of the study, the authors found a number of interesting things:
• Total training volume (setsxrepsxweight) was very different between the three groups, with the four set group having a training volume more than 200% greater than the one set group and the eight set group having a training volume more than 460% greater than the one set group.
• Between the baseline testing after the washout period and the end of the six week intervention, the 1 set group improved their back squat strength by 10%. The four set group improved by 14%. The 8 set group improved by 19%.
• The authors also noted the existence of high, medium, and low responders. The high responders increased their squat strength by almost 30%, the medium by almost 15%, the low by about 3%.
• According to the authors, 11/13 low responders were in the one and four-set groups.

Over a six week training intervention, performing eight sets of squats produced superior gains to one set. Although, six weeks of one-set training increased squat strength by 10%. Having said that, there are some qualifications that need to be kept in mind. First, at baseline testing all the groups were squatting around 185-190% of bodyweight. So there is some training experience but these are not “strong” lifters. This suggests that almost any training program will still produce gains for these subjects. Second, the low/medium/high responder information is very interesting and I’m grateful that the authors looked at this. It also significantly complicates the results. If there were fewer low responders in the one- and four-set groups, those groups might have experienced better gains in the squat and the differences between the groups might not be as stark.

What causes someone to be a high, medium, or low responder?  This actually isn’t the first study I’ve seen suggesting this exists.    Petrella et al (2008) looked at how people respond to 16 weeks of strength training and found that those that increased their population of satellite cells the most during training had the most significant hypertrophy gains.  Satellite cells exist in between the inner and outer membranes of the muscle fibers and are thought to provide the material for muscle hypertrophy.  However, some of us have many and some of us don’t – in other words this seems to bea  genetic limitation to training.

This was a really interesting study, but it shows a need for us to start looking at training gains in terms of whether people are responders to training.

Marshall, P.W.M., McEwen, M., and Robbins, D.W. (2011). Strength and neuromuscular adaptation following one, four, and eight sets of high intensity resistance exercise in trained males. European Journal of Applied Physiology, 111: 3007-3016.


Petrella, J.K., Kim, J-S., Mayhew, D.L., Cross, J.M., and Bamman, M.M.  (2008).  Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis.  Journal of Applied Physiology, 104: 1736-1742.



De Villarreal et al have a really interesting study in the December issue of the Journal of Strength and Conditioning Research looking at the impact of different exercise protocols on the vertical jump. The authors studied college physical education students using one of five protocols: heavy full-squats, power half squats (i.e. to parallel), weighted counter-movement jumps (CMJ), plyometrics, and a combination of all. Subjects were tested on their vertical jump height and their performance on CMJs with 17kg, 27kg, and 37kg of added resistance.

All training took place 3 times per week for seven weeks:
• Heavy squat group: Gradually increased the resistance over seven weeks while decreasing the volume.
• Power half squat group: Gradually increased the resistance over seven weeks while decreasing the volume. The initial resistance was selected as the resistance that maximized power output, after the first week the resistance was increased each week and leveled out at weeks six and seven.
• Weighted CMJ group: Resistance was selected based upon what maximized power output. Initially the group exercised with 30% less than the amount that maximizes power output, over seven weeks this was increased.
• Plyometric group: sets of five rebound jumps.
• Combined group: Basically combined all the above workouts.

In terms of results:
• All groups increased the heights of their vertical jumps, the heights of their loaded CMJ height at each resistance, and the rate of force development during the loaded CMJs. There were no statistically significant differences between any of the groups.
• There were statistically significant increases in power output during loaded CMJs for the combined group and the weighted CMJ group only. However, all groups increased their power outputs by 3-13% at each resistance after seven weeks of training. So while this may not be statistically significant, it is an increase.

The results are interesting because essentially all the training programs worked. To me the most interesting result in the vertical jump height, the weighted CMJ testing condition isn’t really something that’s going to be duplicated on the field. The authors don’t give us the vertical jump values, only a graph so it is difficult to tease out the improvements in vertical jump. This suggests that heavy squats, squats done explosively, weighted vertical jumps, and plyos all improve vertical jump. The results are also interesting because the group with the greatest volume (the combined group) made the same gains as the other groups.

Now, there are some limitations. First, the subjects were college students. It’s very possible that strength trained athletes would have had different results. Second, the study may not have been long enough to tease out differences between the training programs. Third, all the squats and weighted CMJs are being done in a Smith machine which may impact both adaptations and transferability of the results. Finally, by using weights greater than that which maximized power output (the power squat group) or by using weights less than that which maximized power output (weighted CMJ group) both of these groups may not have made the gains that they could have as a result of the training.

De Villarreal, E.S.S., Izquierdo, M., and Gonzalez-Badillo, J.J. (2011). Enhancing jump performance after combined vs. maximal power, heavy-resistance, and plyometric training alone. Journal of Strength and Conditioning Research, 25(12), 3274-3281.

The power clean is a popular exercise for the strength and conditioning of athletes as well as an assistance exercise in the training of Olympic lifters. The lift uses most of the muscles of the body, is done standing up, must be completed in around a second to be successful, and results in a great deal of power output especially compared to many other (and slower) strength training exercises. For all these reasons, it is popular for the conditioning of athletes.

There are a number of variations of the power clean. It can be performed from the floor (power clean), from blocks (the bar rests on a raised surface), or from the hang (the lifter holds the bar from a static position and then performs the lift).

Comfort et al, in the December issue of the Journal of Strength and Conditioning Research, studied whether a particular variation of the power clean results in a better power output. In their study, they had sixteen male rugby league players perform variations of the power clean with 60% of their 1-RM on a force platform. The variations were the power clean proper, the lift from the hang (knee height), the lift from the hang (mid-thigh level), and the clean pull from mid-thigh. Each lifter did three reps on each lift, with 30 seconds of rest between each lift.

The results are not what I expected:
• Mid-thigh power clean and mid-thigh clean pull had the greatest force output, followed by knee height power clean, followed by the power clean proper (~2800 newtons for mid-thigh power clean versus ~2300 newtons for the power clean).
• The same pattern was true for rate of force development (~15,000 N/s for the mid-thigh power clean versus ~8700 N/S for the power clean).
• The same pattern was true for power output (~3600 Watts for the mid-thigh power clean versus ~2600 Watts for the power clean).
• In all cases, the mid-thigh pull had greater force, RFD, and power values than the mid-thigh clean though there were no statistically significant differences between the two.

This is not the first article from these authors on this (see for a summary of another article. If it’s true, and if we are seeking to maximize our athletes’ training time, then it suggests that the mid-thigh pulls and cleans may be a better use of our time.

Now, there are some assumptions with these results:
1. The subjects are trained. It’s likely that subjects that are more, or less trained would have responded differently to the testing.
2. 60% is the optimal intensity. The other study performed by the authors on this subject also used 60% of 1-RM as the testing intensity. Some authors have found that peak power occurs at 80% of 1-RM, though there is no statistically significant difference in the ranges of 50%-90% of 1-RM (Cormie et al 2007, Kilduff et al 2007).
3. The subjects have good technique on the lifts. Proper technique may have a huge impact on the outcome of the study. We have now way of knowing the subjects technical mastery of the lifts.

Lastly, it needs to be pointed out that this is not a training study. In other words, we don’t see the impact of focusing on x number of weeks of the mid-thigh lifts versus the power clean on power output and other variables. This would be an interesting route to go with future research.

Comfort, P., Allen, M., and Graham-Smith, P. (2011). Kinetic comparisons during variations of the power clean. Journal of Strength and Conditioning Research, 25(12), 3269-3273.

Cormie, P., McCauley, G.O., Triplett, N.T., and McBride, J.M. (2007). Optimal loading for maximal power output during lower-body resistance exercises. Medicine and Science in Sports and Exercise, 39(2), 340-349.

Kilduff, L.P., Bevan, H., Owen, N., Kingsley, M.I.C., Brunce, P., Bennett, M., and Cunningham, D. (2007). Optimal loading for peak power output during the hang power clean in professional rugby players. International Journal of Sports Physiology and Performance, 2, 260-269.

Kettlebells exploded on the scene a number of years ago and have attained almost cult-like status. They are promoted as a tool to increase strength, hypertrophy, power, core stability, metabolic conditioning, and even cardio-vascular conditioning. Despite the claims, almost no research has been done on this exercise mode. Harrison et al, in the December issue of Strength and Conditioning Journal, have an article that reviews the state of the literature and provides recommendations for the implementation of kettlebells into a strength and conditioning program.

As kettlebells have mass, and as this mass can be increased (i.e. you can always exercise with a heavier kettlebell), they are effective at increasing strength and hypertrophy. It also stands to reason that performing explosive exercises with them will result in an increase in power.

In terms of cardio-vascular and fat-loss benefits, the authors don’t report terribly strong research. For example, there is a study that demonstrated that performing the two-handed swing for twelve minutes increases heart rate, but it is not as stressful as running. They report that research looking at the metabolic cost of using kettlebells is unclear and guilty of comparing apples to oranges (i.e. this means you cannot really draw a conclusion on the effectiveness of kettlebells one way or the other).

At the very least, the authors feel that kettlebells can aid with muscular strength/hypertrophy/power and certainly add some variety and fun to a strength and conditioning program.

With regards to implementation, I feel that the authors make an excellent point when they state that: “Training protocols for kettlebells do not necessarily need to be different from the traditional resistance training protocols…” At the end of the day, if the goal is to increase strength (no matter what training tool is used) then one needs to lift heavy weights, for few repetitions, with full recovery. If the goal is to train power, one needs to focus on being explosive, which means limiting fatigue and allowing full recovery. If the goal is endurance or metabolic conditioning, then the workout will look very different.

I personally have some opinions about technique and kettlebell exercises, especially when we start talking about the Olympic lifts and kettlebells. I’m uncomfortable with the idea of swinging the weights for these lifts, which most places advocate. I still feel that the triple extension motion is very important (if the idea is to train for transferable power). I also think that swinging the weight overhead on the snatch is just asking for trouble.

Harrison, J.S., Schoenfeld, B., and Schoenfeld, M.L. (2011). Application of kettlebells in exercise program design. Strength and Conditioning Journal, 33(6), 86-89.

Jason Karp had a great article in the November issue of Techniques, which is the publication put out by the U.S. Track & Field and Cross Country Coaches Association. Dr. Karp writes for everything from peer-review journals to coaching publications like Techniques and Track Coach dealing primarily with distance running. I enjoy his writing even though I don’t work with distance runners.

In this article, he is focusing on lessons learned from physiology and how they can be applied to distance running. I’m not going to cover all of these, instead I’m going to focus on one big one (and I’m paraphrasing here), which is that maximal oxygen consumption might be overemphasized both in the lab and in training.

Maximal oxygen consumption has been the measure for distance runners for about forty years now. A lot of training programs are designed with the idea of improving this measure. This is where we get things like long, slow distance running. The idea is to go at a slow, steady state for a long time, which will improve maximal oxygen consumption.

The problem is that maximal oxygen consumption is one of those things that genetics plays a big role in. No amount of training is going to get you to 70+ ml/kg/min unless you have the genetics for it. Some of this training (like long slow distance training) can teach even distance runners to be slow, which is not the intent behind training.

So if maximal oxygen consumption isn’t the smoking gun, what is? According to Dr. Karp, the two important measures might be lactate threshold and running economy. Lactate threshold refers to the fastest speed that can be sustained aerobically. This is important because athletes can have a similar maximal oxygen consumption, but the ones with the greater lactate threshold will be able to run faster.

Running economy is the amount of oxygen consumed at submaximal speeds. In other words, an athlete with a greater running economy does less work at the same speed as another athlete, allowing them to run further and faster.

Karp, J.R. (2011). A faster runner. Techniques, 5(2): 30-39.

David Behm is one of my favorite authors. He often takes a critical look at our assumptions regarding strength training and performs extensive literature reviews that cause you to rethink assumptions. In the past he has written reviews on velocity specificity, the neural effects of strength training, and core training all of which are thought-provoking articles. The challenge has been that he tends to publish in journals that are not as accessible to most coaches and practitioners. In the November issue of the European Journal of Applied Physiology, David Behm and Anis Chaouachi perform a literature review looking at the impact of static and dynamic stretching on performance.

The literature review begins by providing the historical background. Thirty years ago we would have been recommending a warm-up that includes submaximal aerobic exercise followed by 5-10 minutes of static stretching. The authors note that a few groundbreaking studies began chipping away at the belief that static stretching was beneficial during the warm-up. They then note that a significant number of studies report performance decreases in strength, power, and jumping measures as a result of static stretching. According to the authors, though, the results are not as clear-cut as many studies show no impact or improvement as a result of static stretching and there appears to be no consensus about its impact on sprinting and running.

To investigate this, the authors performed a literature review from 1989 to 2010 to look at the acute effects of static and dynamic stretching on performance. The results are interesting. Across studies, the authors found:
• An almost 7% decrease in strength and force as a result of static stretching as warm-up.
• An almost 3% decrease in jumping performance.
• An approximate 2% decrease in sprinting performance.
• There is a relationship between the length of the static stretch and the decrease in performance. Basically stretches held for greater than 90 seconds produce more a decrease in performance than those held for less (some studies have stretches being performed for up to 20 minutes).
• However, this information is not unanimous as there are studies looking at shorter duration stretches that show performance decreases in track and field athletes.

The authors make a number of recommendations:
• First, given the conflicting nature of the literature static stretching as warm-up for athletes should probably be minimized.
• Second, there are sports and positions in sports where static stretching as warm-up is going to be needed (the authors’ example is goaltending in hockey). When this is the case the static stretches should last less than 30 seconds for each muscle group.
• Third, if the goal is to increase range of motion, then there should be a separate static stretching session.

Behm, D.G. and Chaouachi, A. (2011). A review of the acute effects of static and dynamic stretching on performance. European Journal of Applied Physiology, 111: 2633-2651.