Skip navigation

The power clean is a popular exercise for the strength and conditioning of athletes as well as an assistance exercise in the training of Olympic lifters. The lift uses most of the muscles of the body, is done standing up, must be completed in around a second to be successful, and results in a great deal of power output especially compared to many other (and slower) strength training exercises. For all these reasons, it is popular for the conditioning of athletes.

There are a number of variations of the power clean. It can be performed from the floor (power clean), from blocks (the bar rests on a raised surface), or from the hang (the lifter holds the bar from a static position and then performs the lift).

Comfort et al, in the December issue of the Journal of Strength and Conditioning Research, studied whether a particular variation of the power clean results in a better power output. In their study, they had sixteen male rugby league players perform variations of the power clean with 60% of their 1-RM on a force platform. The variations were the power clean proper, the lift from the hang (knee height), the lift from the hang (mid-thigh level), and the clean pull from mid-thigh. Each lifter did three reps on each lift, with 30 seconds of rest between each lift.

The results are not what I expected:
• Mid-thigh power clean and mid-thigh clean pull had the greatest force output, followed by knee height power clean, followed by the power clean proper (~2800 newtons for mid-thigh power clean versus ~2300 newtons for the power clean).
• The same pattern was true for rate of force development (~15,000 N/s for the mid-thigh power clean versus ~8700 N/S for the power clean).
• The same pattern was true for power output (~3600 Watts for the mid-thigh power clean versus ~2600 Watts for the power clean).
• In all cases, the mid-thigh pull had greater force, RFD, and power values than the mid-thigh clean though there were no statistically significant differences between the two.

This is not the first article from these authors on this (see for a summary of another article. If it’s true, and if we are seeking to maximize our athletes’ training time, then it suggests that the mid-thigh pulls and cleans may be a better use of our time.

Now, there are some assumptions with these results:
1. The subjects are trained. It’s likely that subjects that are more, or less trained would have responded differently to the testing.
2. 60% is the optimal intensity. The other study performed by the authors on this subject also used 60% of 1-RM as the testing intensity. Some authors have found that peak power occurs at 80% of 1-RM, though there is no statistically significant difference in the ranges of 50%-90% of 1-RM (Cormie et al 2007, Kilduff et al 2007).
3. The subjects have good technique on the lifts. Proper technique may have a huge impact on the outcome of the study. We have now way of knowing the subjects technical mastery of the lifts.

Lastly, it needs to be pointed out that this is not a training study. In other words, we don’t see the impact of focusing on x number of weeks of the mid-thigh lifts versus the power clean on power output and other variables. This would be an interesting route to go with future research.

Comfort, P., Allen, M., and Graham-Smith, P. (2011). Kinetic comparisons during variations of the power clean. Journal of Strength and Conditioning Research, 25(12), 3269-3273.

Cormie, P., McCauley, G.O., Triplett, N.T., and McBride, J.M. (2007). Optimal loading for maximal power output during lower-body resistance exercises. Medicine and Science in Sports and Exercise, 39(2), 340-349.

Kilduff, L.P., Bevan, H., Owen, N., Kingsley, M.I.C., Brunce, P., Bennett, M., and Cunningham, D. (2007). Optimal loading for peak power output during the hang power clean in professional rugby players. International Journal of Sports Physiology and Performance, 2, 260-269.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: